shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

270
active users

#fluiddynamics

3 posts3 participants1 post today
Nicole Sharp<p><strong>Tracking Insects in Flight</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/flight_track3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Insects are masters of a challenging flight regime; their agility, stability, and control far outstrip anything we’ve built at their size. But to even understand how they accomplish this, researchers must manage to capture those maneuvers in the first place. Insects don’t stay in one small area, which is what the typical fixed camera motion capture set-up requires. Instead, one group of researchers has <a href="https://doi.org/10.1126/scirobotics.adm7689" rel="nofollow noopener noreferrer" target="_blank">designed a system</a> with a moveable mirror that tracks an insect’s motion in real-time, ensuring that the camera stays fixed on the insect even as it traverses a room or — for the drone-mounted version — a field. </p><p>Real-time motion tracking means that researchers can better capture detailed footage of the insect’s maneuvers in a lab environment, or they can head into the field to follow insects in the wild. Imagine tracking individual pollinators through a full day of gathering or watching how a bumblebee responds to getting hit by a raindrop mid-flight. (Video and image credit: Science; research credit: <a href="https://doi.org/10.1126/scirobotics.adm7689" rel="nofollow noopener noreferrer" target="_blank">T. Vo-Doan et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flapping-flight/" target="_blank">#flappingFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insect-flight/" target="_blank">#insectFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Interstellar Jets</strong></p><p>This JWST image shows a couple of <a href="https://en.wikipedia.org/wiki/Herbig%E2%80%93Haro_object" rel="nofollow noopener noreferrer" target="_blank">Herbig-Hero objects</a>, seen in infrared. These bright objects form when jets of fast-moving energetic particles are expelled from the poles of a newborn star. Those particles hit pockets of gas and dust, forming glowing, hot shock waves like those seen here in red. The star that birthed the object is out of view to the lower-right. The bright blue light surrounded by red spirals that sits near the tip of the shock waves is actually a distant spiral galaxy that happens to be aligned with our viewpoint. (Image credit: NASA/ESA/CSA/STScI/JWST; via <a href="https://apod.nasa.gov/apod/ap250409.html?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APOD</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jets/" target="_blank">#jets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shockwave/" target="_blank">#shockwave</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>“Spines”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/leighton-4.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/leighton-5-2048x1365-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/leighton-6.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/leighton-7.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/leighton-8.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/leighton-2.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Water droplets cling to spine-covered plant life in this series from photographer Tom Leighton. The hairs are hydrophobic — notice how spherical the drops appear. Many plants make parts of their leaves and stems hydrophobic in order to redirect water toward their roots, where it can be taken in. Others use hair-like awns to collect and draw in dew that supplements their water capture. (Image credit: <a href="https://www.tleighton.com/" rel="nofollow noopener noreferrer" target="_blank">T. Leighton</a>; via <a href="https://www.thisiscolossal.com/2025/04/tom-leighton-spines/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hydrophobic/" target="_blank">#hydrophobic</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plants/" target="_blank">#plants</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Creating Liquid Landscapes</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Artist <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">Roman De Giuli</a> excels at creating what appear to be vast landscapes carved by moving water. In reality, these pieces are small-scale flows, created on paper. Now, De Giuli takes us behind the scenes to see how he creates these masterpieces — layering, washing, burning, and repeating to build up the paperscape that eventually hosts the flows we see recorded. The work is meticulous and slow, and the results are incredible. De Giuli’s videos never fail to transport me to a calmer, more pristine version of our world. I can’t wait to see the new series! (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Seeking Uranus’s Spin</strong></p><p>Uranus is one of our solar system’s oddest planets. An ice giant, it spins on its side. We originally estimated its rate of rotation using measurements from Voyager 2, the only spacecraft to have visited the planet. But that measurement was so imprecise that within two years, astronomers could no longer use it to predict where the planet’s poles were. Now a <a href="https://www.nature.com/articles/s41550-025-02492-z" rel="nofollow noopener noreferrer" target="_blank">new study</a>, drawing on over a decade of Hubble observations of Uranus’s auroras, has pinned down the planet’s rotation rate far more precisely: 17 hours, 14 minutes, and 52 seconds. While that’s within the original measurement’s 36-second margin of error, the new measurement has a margin of error of only 0.036 seconds. In addition to helping plan a theoretical future Uranus mission, this more accurate rotation rate allows researchers to reexamine decades of data, now with certainty about the planet’s orientation at the time of the observation. (Image credit: ESA/Hubble, NASA, L. Lamy, L. Sromovsky; research credit: <a href="https://www.nature.com/articles/s41550-025-02492-z" rel="nofollow noopener noreferrer" target="_blank">L. Lamy et al.</a>; via <a href="https://gizmodo.com/a-long-held-assumption-about-uranus-just-got-upended-2000586293?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aurora/" target="_blank">#aurora</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/uranus/" target="_blank">#Uranus</a></p>
DeWuyt<p>New to Mastodon and excited to share moments like this—Caught this elegant trace of a wingtip vortex slicing through the sky—possibly the outer arc of a horseshoe vortex. These swirling trails reveal the invisible physics of lift in action!<br><a href="https://mastodon.social/tags/HorseshoeVortex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HorseshoeVortex</span></a> <a href="https://mastodon.social/tags/WingtipVortex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WingtipVortex</span></a> <a href="https://mastodon.social/tags/Aviation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Aviation</span></a> <a href="https://mastodon.social/tags/Stormchasing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Stormchasing</span></a> <a href="https://mastodon.social/tags/Skywatching" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Skywatching</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/Photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.social/tags/Introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Introduction</span></a></p>
Nicole Sharp<p><strong>Quietening Drones</strong></p><p>A drone’s noisiness is one of its major downfalls. Standard drones are obnoxiously loud and disruptive for both humans and animals, one reason that they’re not allowed in many places. This flow visualization, <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">courtesy of the Slow Mo Guys</a>, helps show why. The image above shows a standard off-the-shelf drone rotor. As each blade passes through the smoke, it sheds a wingtip vortex. (Note that these vortices are constantly coming off the blade, but we only see them where they intersect with the smoke.) As the blades go by, a constant stream of regularly-spaced vortices marches downstream of the rotor. This regular spacing creates the dominant acoustic frequency that we hear from the drone.</p> Animation of wingtip vortices coming off a drone rotor with blades of different lengths. This causes interactions between the vortices, which helps disrupt the drone’s noise. <p>To counter that, the company Wing uses a rotor with blades of different lengths (bottom image). This staggers the location of the shed vortices and causes some later vortices to spin up with their downstream neighbor. These interactions break up that regular spacing that generates the drone’s dominant acoustic frequency. Overall, that makes the drone sound quieter, likely without a large impact to the amount of lift it creates. (Image credit: <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">The Slow Mo Guys</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller/" target="_blank">#propeller</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller-vortex/" target="_blank">#propellerVortex</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wingtip-vortices/" target="_blank">#wingtipVortices</a></p>
Nicole Sharp<p><strong>Climate Change and the Equatorial Cold Tongue</strong></p><p>A cold region of Pacific waters stretches westward along the equator from the coast of Ecuador. Known as the equatorial cold tongue, this region exists because trade winds push surface waters away from the equator and allow colder, deeper waters to surface. Previous climate models have predicted warming for this region, but instead we’ve observed cooling — or at least a resistance to warming. <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Now researchers</a> using decades of data and new simulations report that the observed cooling trend is, in fact, a result of human-caused climate changes. Like the cold tongue itself, this new cooling comes from wind patterns that change ocean mixing.</p><p>As pleasant as a cooling streak sounds, this trend has unfortunate consequences elsewhere. Scientists have found that this cooling has a direct effect on drought in East Africa and southwestern North America. (Image credit: J. Shoer; via <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APS News</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Matt<p>The first law of Fluid Dynamics:</p><p>If you walk too quickly, you WILL spill your drink.</p><p><a href="https://mas.to/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a></p>
Bob Harvey<p>Ok, this is really interesting </p><p><a href="https://www.livescience.com/physics-mathematics/mathematics/mathematicians-just-solved-a-125-year-old-problem-uniting-3-theories-in-physics" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">livescience.com/physics-mathem</span><span class="invisible">atics/mathematics/mathematicians-just-solved-a-125-year-old-problem-uniting-3-theories-in-physics</span></a></p><p><a href="https://cupoftea.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://cupoftea.social/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://cupoftea.social/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluiddynamics</span></a> <a href="https://cupoftea.social/tags/hilbert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hilbert</span></a> <a href="https://cupoftea.social/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a></p>
Nicole Sharp<p><strong>Hot Droplets Bounce</strong></p><p>In the Leidenfrost effect, room-temperature droplets bounce and skitter off a surface much hotter than the drop’s boiling point. With those droplets, a layer of vapor cushions them and insulates them from the hot surface. In today’s study, researchers instead used hot or burning drops (above) and observed how they impact a room-temperature surface. While room-temperature droplets hit and stuck (below), hot and burning droplets bounced (above).</p><p>In this case, the cushioning air layer doesn’t come from vaporization. Instead, the bottom of the falling drop cools faster than the rest of it, increasing the local surface tension. That increase in surface tension creates a Marangoni flow that pulls fluid down along the edges of the drop. That flow drags nearby air with it, creating the cushioning layer that lets the drop bounce. In this case, the authors called the phenomenon “self-lubricating bouncing.” (Image and research credit: <a href="https://doi.org/10.1016/j.newton.2025.100014" rel="nofollow noopener noreferrer" target="_blank">Y. Liu et al.</a>; via <a href="https://arstechnica.com/science/2025/03/these-hot-oil-droplets-can-bounce-off-any-surface/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p> <p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bouncing-droplets/" target="_blank">#bouncingDroplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-impact/" target="_blank">#dropletImpact</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/entrainment/" target="_blank">#entrainment</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Bifurcating Waterways</strong></p><p>Your typical river has a single water basin and drains along a river or two on its way to the sea. But there are a handful of rivers and lakes that don’t obey our usual expectations. Some rivers flow in two directions. Some lakes have multiple outlets, each to a separate water basin. That means that water from a single lake can wind up in two entirely different bodies of water.</p><p>The most famous example of these odd waterways is South America’s Casiquiare River, seen running north to south in the image above. This navigable river connects the Orinoco River (flowing east to west in this image) with the Rio Negro (not pictured). Since the Rio Negro eventually joins the Amazon, the Casiquiare River’s meandering, nearly-flat course connects the continent’s two largest basins: the Orinoco and the Amazon.</p><p>For more strange waterways across the Americas, check out <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">this review paper</a>, which describes a total of 9 such hydrological head-scratchers. (Image credit: <a href="https://www.flickr.com/photos/observacao-da-terra/31909257768/" rel="nofollow noopener noreferrer" target="_blank">Coordenação-Geral de Observação da Terra/INPE</a>; research credit: <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">R. Sowby and A. Siegel</a>; via <a href="https://eos.org/research-spotlights/the-rivers-that-science-says-shouldnt-exist?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-hydrology/" target="_blank">#surfaceHydrology</a></p>
UK<p><a href="https://www.europesays.com/uk/39984/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/39984/</span><span class="invisible"></span></a> Physicists Have Unlocked the Secret to the Perfect Cup of Coffee, While Using Fewer Beans <a href="https://pubeurope.com/tags/coffee" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coffee</span></a> <a href="https://pubeurope.com/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://pubeurope.com/tags/PerfectCup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PerfectCup</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a> <a href="https://pubeurope.com/tags/UniversityOfPennsylvania" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UniversityOfPennsylvania</span></a></p>
Nicole Sharp<p><strong>Inside an Alien Atmosphere</strong></p><p>Studying the physics of planetary atmospheres is challenging, not least because we only have a handful of examples to work from in our own solar system. So it’s exciting that <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">researchers have unveiled</a> our first look at the 3D structure of an exoplanet‘s atmosphere. </p><p>Using ground-based observations, researchers studied WASP-121b, also known as Tylos, an ultra-hot Jupiter that circles its star in only 30 Earth hours. One face of the planet always faces its star while the other faces into space. The team found that the exoplanet has a flow deep in the atmosphere that carries iron from the hot daytime side to the colder night side. Higher up, the atmosphere boasts a super-fast jet-stream that doubles in speed (from an estimated 13 kilometers per second to 26 kilometers per second) as it crosses from the morning terminator to the evening. As one researcher observed, the planet’s everyday winds make Earth’s worst hurricanes look tame. (Image credit: <a href="https://www.eso.org/public/images/eso2504b/" rel="nofollow noopener noreferrer" target="_blank">ESO/M. Kornmesser</a>; research credit: <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">J. Seidel et al.</a>; via <a href="https://gizmodo.com/first-3d-map-of-an-exoplanets-atmosphere-reveals-bizarre-weather-2000566049?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/exoplanets/" target="_blank">#exoplanets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Channeling Espresso</strong></p><p>Coffee-making continues to be a rich source for physics insight. The roasting and brewing processes are fertile ground for chemistry, physics, and engineering. Recently, one <a href="https://arstechnica.com/science/2025/03/the-physics-of-brewing-the-perfect-espresso/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">research group has focused</a> on the phenomenon of channeling, where water follows a preferred path through the coffee grounds rather than seeping uniformly through the grounds. Channeling reduces the amount of coffee extracted in the brew, which is both wasteful and results in a less flavorful cup. By uncovering what mechanics go into channeling, the group hopes to help baristas mitigate the undesirable process, creating a repeatable, efficient, and tasty espresso every time. (Image credit: <a href="https://unsplash.com/photos/person-holding-silver-steel-cup-sBS-Ufi0f1g" rel="nofollow noopener noreferrer" target="_blank">E. Yavuz</a>; via <a href="https://arstechnica.com/science/2025/03/the-physics-of-brewing-the-perfect-espresso/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/coffee/" target="_blank">#coffee</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cooking/" target="_blank">#cooking</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-flow/" target="_blank">#porousFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-media/" target="_blank">#porousMedia</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Flying Without a Rudder</strong></p><p>Aircraft typically use a vertical tail to keep the craft from rolling or yawing. Birds, on the other hand, maneuver their wings and tail feathers to counter unwanted motions. <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">Researchers found</a> that the list of necessary adjustments is quite small: just 4 for the tail and 2 for the wings. Implementing those 6 controllable degrees of freedom on their bird-inspired PigeonBot II allowed the biorobot to fly steadily, even in turbulent conditions, without a rudder. Adapting such flight control to the less flexible surfaces of a typical aircraft will take time and creativity, but the savings in mass and drag could be worth it. (Image credit: E. Chang/Lentink Lab; research credit: <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">E. Chang et al.</a>; via <a href="https://doi.org/10.1063/pt.usov.ggrh" rel="nofollow noopener noreferrer" target="_blank">Physics Today</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biorobotics/" target="_blank">#biorobotics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bird-flight/" target="_blank">#birdFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/birds/" target="_blank">#birds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flight-control/" target="_blank">#flightControl</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Salt Fingers</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Any time a fluid under gravity has areas of differing density, it convects. We’re used to thinking of this in terms of temperature — “hot air rises” — but temperature isn’t the only source of convection. Differences in concentration — like salinity in water — cause convection, too. This video shows a special, more complex case: what happens when there are <a href="https://en.wikipedia.org/wiki/Double_diffusive_convection" rel="nofollow noopener noreferrer" target="_blank">two sources of density gradient</a>, each of which diffuses at a different rate.</p><p>The classic example of this occurs in the ocean, where colder fresher water meets warmer, saltier water (and vice versa). Cold water tends to sink. So does saltier water. But since temperature and salinity move at different speeds, their competing convection takes on a shape that resembles dancing, finger-like plumes as seen here. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2677989" rel="nofollow noopener noreferrer" target="_blank">M. Mohaghar et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-convection/" target="_blank">#doubleDiffusiveConvection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-instability/" target="_blank">#doubleDiffusiveInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Arctic Melt</strong></p><p>Temperatures in the Arctic are rising faster than elsewhere, triggering more and more melting. Photographer Scott Portelli captured a melting ice shelf protruding into the ocean in this aerial image. Across the top of the frozen landscape, streams and rivers cut through the ice, leading to waterfalls that flood the nearby ocean with freshwater. This meltwater will do more than raise ocean levels; it changes temperature and salinity in these regions, disrupting the convection that keeps our planet healthy. (Image credit: <a href="https://oceanographicmagazine.com/opa-winner/ocean-conservation-impact-photographer-of-the-year-2024-scopor3/" rel="nofollow noopener noreferrer" target="_blank">S. Portelli/OPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/08/ocean-photographer-of-the-year-2024/" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Chaotic Hose Instability</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/chaos_hose1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/chaos_hose2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/chaos_hose3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Steve Mould is back with another video looking at wild fluid behaviors. This time he’s considering hose instabilities like the one that makes a water-carrying hose beyond a certain length to whip wildly back and forth. He tries to track down the reasoning for these flexible hoses snapping and whipping. In truth, both the hoses and the wind dancers do their thing due to interactions between the elasticity of the hose and the fluid dynamics of the flows within. These applications are ripe for a few control volume thought experiments. (Video and image credit: S. Mould)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/chaos/" target="_blank">#chaos</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/elasticity/" target="_blank">#elasticity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a></p>
Nicole Sharp<p><strong>Reclaiming the Land</strong></p><p>Lava floods human-made infrastructure on Iceland’s Reykjanes peninsula in this aerial image from photographer Ael Kermarec. Protecting roads and buildings from lava flows is a formidable challenge, but it’s one that researchers are tackling. But the larger and faster the lava flow, the harder infrastructure is to protect. Sometimes our best efforts are simply overwhelmed by nature’s power. (Image credit: <a href="https://www.worldnaturephotographyawards.com/winners-2025" rel="nofollow noopener noreferrer" target="_blank">A. Kermarec/WNPA</a>; via <a href="https://www.thisiscolossal.com/2025/03/2025-world-nature-photography-awards/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gravity-current/" target="_blank">#gravityCurrent</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lava/" target="_blank">#lava</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>