shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

266
active users

#flowvisualization

0 posts0 participants0 posts today
Nicole Sharp<p><strong>Glimpses of Coronal Rain</strong></p><p>Despite its incredible heat, our sun‘s corona is so faint compared to the rest of the star that we can rarely make it out except during a total solar eclipse. But a <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">new adaptive optic technique</a> has given us coronal images with unprecedented detail.</p><p>These images come from the 1.6-meter Goode Solar Telescope at Big Bear Solar Observatory, and they required some 2,200 adjustments to the instrument’s mirror every second to counter atmospheric distortions that would otherwise blur the images. With the new technique, the team was able to sharpen their resolution from 1,000 kilometers all the way down to 63 kilometers, revealing heretofore unseen details of plasma from solar prominences dancing in the sun’s magnetic field and cooling plasma falling as coronal rain.</p><p>The team hope to upgrade the 4-meter Daniel K. Inouye Solar Telescope with the technology next, which will enable even finer imagery. (Image credit: <a href="https://nso.edu/press-release/new-adaptive-optics-shows-stunning-details-of-our-stars-atmosphere/" rel="nofollow noopener" target="_blank">Schmidt et al./NJIT/NSO/AURA/NSF</a>; research credit: <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">D. Schmidt et al.</a>; via <a href="https://gizmodo.com/telescope-upgrade-reveals-suns-coronal-rain-in-unprecedented-detail-2000607634" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetic-field/" target="_blank">#magneticField</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Stunning Interstellar Turbulence</strong></p><p>The space between stars, known as the interstellar medium, may be sparse, but it is far from empty. Gas, dust, and plasma in this region forms compressible magnetized turbulence, with some pockets moving supersonically and others moving slower than sound. The flows here influence how stars form, how cosmic rays spread, and where metals and other planetary building blocks wind up. To better understand the physics of this region, <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener" target="_blank">researchers built</a> a numerical simulation with over 1,000 billion grid points, creating an unprecedentedly detailed picture of this turbulence.</p><p>The images above are two-dimensional slices from the full 3D simulation. The upper image shows the current density while the lower one shows mass density. On the right side of the images, magnetic field lines are superimposed in white. The results are gorgeous. Can you imagine a fly-through video? (Image and research credit: <a href="https://doi.org/10.1038/s41550-025-02551-5" rel="nofollow noopener" target="_blank">J. Beattie et al.</a>; via <a href="https://gizmodo.com/most-detailed-simulation-of-magnetic-turbulence-in-space-is-surprisingly-beautiful-2000606528?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astrophysics/" target="_blank">#astrophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/compressibility/" target="_blank">#compressibility</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Melting in a Spin</strong></p><p>The world’s largest iceberg A23a is spinning in a Taylor column off the Antarctic coast. This poster looks at a miniature version of the problem with a fluorescein-dyed ice slab slowly melting in water. On the left, the model iceberg is melting without rotating. The melt water stays close to the base until it forms a narrow, sinking plume. In the center, the ice rotates, which moves the detachment point outward. The wider plume is turbulent compared to the narrow, non-rotating one. At higher rotation speeds (right), the plume is even wider and more turbulent, causing the fastest melting rate. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2676604" rel="nofollow noopener" target="_blank">K. Perry and S. Morris</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gfm/" target="_blank">#2024gfm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/iceberg/" target="_blank">#iceberg</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rotation/" target="_blank">#rotation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Flamingo Fluid Dynamics, Part 2: The Game’s a Foot</strong></p><p>Yesterday we saw how hunting flamingos use their heads and beaks to draw out and trap various prey. Today we take another look at the <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">same study</a>, which shows that flamingos use their footwork, too. If you watch flamingos on a beach, in muddy waters, or in a shallow pool, you’ll see them shifting back and forth as they lift and lower their feet. In humans, we might attribute this to nervous energy, but it turns out it’s another flamingo hunting habit.</p> <p>As a flamingo raises its foot, it draws its toes together; when it stomps down, its foot spreads outward. This morphing shape, researchers discovered, creates a standing vortex just ahead of its feet — right where it lowers its head to sample whatever hapless creatures it has caught in this swirling vortex. And the vortex, as shown below, is strong enough to trap even active swimmers, making the flamingo a hard hunter to escape. (Image credit: top – <a href="https://unsplash.com/photos/a-group-of-flamingos-standing-in-shallow-water-sz6x6Cb23WQ" rel="nofollow noopener" target="_blank">L. Yukai</a>, others – <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; research credit: <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; submitted by Soh KY)</p> <p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flamingo/" target="_blank">#flamingo</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortices/" target="_blank">#vortices</a></p>
Nicole Sharp<p><strong>Flamingo Fluid Dynamics, Part 1: A Head in the Game</strong></p><p>Flamingos are unequivocally odd-looking birds with their long skinny legs, sinuous necks, and bent L-shaped beaks. They are filter-feeders, but a <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">new study shows</a> that they are far from passive wanderers looking for easy prey in shallow waters. Instead, flamingos are active hunters, using fluid dynamics to draw out and trap the quick-moving invertebrates they feed on. In today’s post, I’ll focus on how flamingos use their heads and beaks; next time, we’ll take a look at what they do with their feet.</p> <p>Feeding flamingos often bob their heads out of the water. This, it turns out, is not indecision, but a strategy. Lifting its flat upper forebeak from near the bottom of a pool creates suction. That suction creates a tornado-like vortex that helps draw food particles and prey from the muddy sediment.</p> <p>When feeding, flamingos will also open and close their mandibles about 12 times a second in a behavior known as chattering. This movement, as seen in the video above, creates a flow that draws particles — and even active swimmers! — toward its beak at about seven centimeters a second. </p> <p>Staying near the surface won’t keep prey safe from flamingos, either. In slow-flowing water, the birds will set the upper surface of their forebeak on the water, tip pointed downstream. This seems counterintuitive, until you see flow visualization around the bird’s head, as above. Von Karman vortices stream off the flamingo’s head, which creates a slow-moving recirculation zone right by the tip of the bird’s beak. Brine shrimp eggs get caught in these zones, delivering themselves right to the flamingo’s mouth.</p><p>Clearly, the flamingo is a pretty sophisticated hunter! It’s actively drawing out and trapping prey with clever fluid dynamics. Tomorrow we’ll take a look at some of its other tricks. (Image credit: top – <a href="https://unsplash.com/photos/pink-flamingo-bvpWQI8Xb0k" rel="nofollow noopener" target="_blank">G. Cessati</a>, others – <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; research credit: <a href="https://doi.org/10.1073/pnas.2503495122" rel="nofollow noopener" target="_blank">V. Ortega-Jimenez et al.</a>; submitted by Soh KY)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/filter-feeding/" target="_blank">#filterFeeding</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flamingo/" target="_blank">#flamingo</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/suction/" target="_blank">#suction</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortices/" target="_blank">#vortices</a></p>
Nicole Sharp<p><strong>Creating Liquid Landscapes</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro3.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro4.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro5.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro6.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Artist <a href="https://www.terracollage.com/" rel="nofollow noopener" target="_blank">Roman De Giuli</a> excels at creating what appear to be vast landscapes carved by moving water. In reality, these pieces are small-scale flows, created on paper. Now, De Giuli takes us behind the scenes to see how he creates these masterpieces — layering, washing, burning, and repeating to build up the paperscape that eventually hosts the flows we see recorded. The work is meticulous and slow, and the results are incredible. De Giuli’s videos never fail to transport me to a calmer, more pristine version of our world. I can’t wait to see the new series! (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Quietening Drones</strong></p><p>A drone’s noisiness is one of its major downfalls. Standard drones are obnoxiously loud and disruptive for both humans and animals, one reason that they’re not allowed in many places. This flow visualization, <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener" target="_blank">courtesy of the Slow Mo Guys</a>, helps show why. The image above shows a standard off-the-shelf drone rotor. As each blade passes through the smoke, it sheds a wingtip vortex. (Note that these vortices are constantly coming off the blade, but we only see them where they intersect with the smoke.) As the blades go by, a constant stream of regularly-spaced vortices marches downstream of the rotor. This regular spacing creates the dominant acoustic frequency that we hear from the drone.</p> Animation of wingtip vortices coming off a drone rotor with blades of different lengths. This causes interactions between the vortices, which helps disrupt the drone’s noise. <p>To counter that, the company Wing uses a rotor with blades of different lengths (bottom image). This staggers the location of the shed vortices and causes some later vortices to spin up with their downstream neighbor. These interactions break up that regular spacing that generates the drone’s dominant acoustic frequency. Overall, that makes the drone sound quieter, likely without a large impact to the amount of lift it creates. (Image credit: <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener" target="_blank">The Slow Mo Guys</a>)</p><p></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller/" target="_blank">#propeller</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller-vortex/" target="_blank">#propellerVortex</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wingtip-vortices/" target="_blank">#wingtipVortices</a></p>
IT News<p>Building A DIY Tornado Tower - A tornado can be an awe-inspiring sight, but it can also flip your car, trash your... - <a href="https://hackaday.com/2025/04/14/building-a-diy-tornado-tower/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">hackaday.com/2025/04/14/buildi</span><span class="invisible">ng-a-diy-tornado-tower/</span></a> <a href="https://schleuss.online/tags/flowvisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flowvisualization</span></a> <a href="https://schleuss.online/tags/tornadotower" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tornadotower</span></a> <a href="https://schleuss.online/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://schleuss.online/tags/tornado" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tornado</span></a> <a href="https://schleuss.online/tags/vortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vortex</span></a></p>
Nicole Sharp<p><strong>Salt Fingers</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta1.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta2.png" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Any time a fluid under gravity has areas of differing density, it convects. We’re used to thinking of this in terms of temperature — “hot air rises” — but temperature isn’t the only source of convection. Differences in concentration — like salinity in water — cause convection, too. This video shows a special, more complex case: what happens when there are <a href="https://en.wikipedia.org/wiki/Double_diffusive_convection" rel="nofollow noopener" target="_blank">two sources of density gradient</a>, each of which diffuses at a different rate.</p><p>The classic example of this occurs in the ocean, where colder fresher water meets warmer, saltier water (and vice versa). Cold water tends to sink. So does saltier water. But since temperature and salinity move at different speeds, their competing convection takes on a shape that resembles dancing, finger-like plumes as seen here. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2677989" rel="nofollow noopener" target="_blank">M. Mohaghar et al.</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-convection/" target="_blank">#doubleDiffusiveConvection</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-instability/" target="_blank">#doubleDiffusiveInstability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Visualizing Unstable Flames</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab1.gif" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab2.gif" rel="nofollow noopener" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab3.png" rel="nofollow noopener" target="_blank"></a></p> <p></p> <p>Inside a combustion chamber, temperature fluctuations can cause sound waves that also disrupt the flow, in turn. This is called a thermoacoustic instability. In this video, researchers explore this process by watching how flames move down a tube. The flame fronts begin in an even curve that flattens out and then develops waves like those on a vibrating pool. Those waves grow bigger and bigger until the flame goes completely turbulent. Visually, it’s mesmerizing. Mathematically, it’s a lovely example of <a href="https://en.wikipedia.org/wiki/Parametric_oscillator" rel="nofollow noopener" target="_blank">parametric resonance</a>, where the flame’s instability is fed by system’s natural harmonics. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2561866" rel="nofollow noopener" target="_blank">J. Delfin et al.</a>; research credit: J. Delfin et al. <a href="https://doi.org/10.1016/j.fuel.2024.132344" rel="nofollow noopener" target="_blank">1</a>, <a href="https://doi.org/10.1016/j.proci.2024.105322" rel="nofollow noopener" target="_blank">2</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/combustion/" target="_blank">#combustion</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/combustion-instability/" target="_blank">#combustionInstability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flame/" target="_blank">#flame</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/parametric-resonance/" target="_blank">#parametricResonance</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/resonance/" target="_blank">#resonance</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/thermoacoustic-instability/" target="_blank">#thermoacousticInstability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Santiago Andrés Triana<p>The obstacle is a pencil, stationary, while the lazy Susan spins underneath with the fluid. The <a href="https://fediscience.org/tags/rheoscopic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rheoscopic</span></a> fluid (more on that on another post) allows the currents to be seen easily. An instability makes the fluid "oscillate" and create the von Kármán vortices as it flows around the pencil. Here's a video:</p><p>[3/4]<br><a href="https://fediscience.org/tags/eddies" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eddies</span></a> <a href="https://fediscience.org/tags/flowVisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flowVisualization</span></a> <a href="https://fediscience.org/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluidDynamics</span></a> <a href="https://fediscience.org/tags/fluidsAsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluidsAsArt</span></a> <a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a></p>
Santiago Andrés Triana<p>I made a circular von Kármán vortex street!<br> <br>[1/4] 🧵 <br><a href="https://fediscience.org/tags/eddies" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eddies</span></a> <a href="https://fediscience.org/tags/flowVisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flowVisualization</span></a> <a href="https://fediscience.org/tags/fluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluidDynamics</span></a> <a href="https://fediscience.org/tags/fluidsAsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluidsAsArt</span></a> <a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/diynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>diynamics</span></a></p>