shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

294
active users

#theorem

0 posts0 participants0 posts today
Paysages Mathématiques<p>Theorem of the Day (March 25, 2025) : The Asymptotic (Half) Liar Formula<br>Source : Theorem of the Day / Robin Whitty<br>pdf : <a href="https://www.theoremoftheday.org/InformationTheory/Liar/TotDLiar.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Informatio</span><span class="invisible">nTheory/Liar/TotDLiar.pdf</span></a><br>notes : <a href="https://www.theoremoftheday.org/Resources/TheoremNotes.htm#126" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Resources/</span><span class="invisible">TheoremNotes.htm#126</span></a> <br><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Theoremoftheday" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>Theoremoftheday</span></a></span></p>
The Krononaut Moon Project 🌑<p>&nbsp;<br>The Amazing History of <a href="https://me.dm/tags/Locality" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Locality</span></a> in <a href="https://me.dm/tags/Theoretical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Theoretical</span></a> <a href="https://me.dm/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a></p><p><a href="https://me.dm/tags/Philosopher" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Philosopher</span></a> <a href="https://me.dm/tags/DavidAlbert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DavidAlbert</span></a> rambles (his word) for ½ hour on the often gripping (and <a href="https://me.dm/tags/funny" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>funny</span></a>) <a href="https://me.dm/tags/saga" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>saga</span></a> of <a href="https://me.dm/tags/nonlocality" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonlocality</span></a> in <a href="https://me.dm/tags/scientific" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scientific</span></a> <a href="https://me.dm/tags/thought" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>thought</span></a>. Starting with <a href="https://me.dm/tags/fish" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fish</span></a>, he ushers us along to <a href="https://me.dm/tags/Bell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bell</span></a>'s <a href="https://me.dm/tags/Theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Theorem</span></a> in the 1960s. It seems we are "inescapably" in the age of nonlocality. Perhaps an age of <a href="https://me.dm/tags/TimeTravelers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TimeTravelers</span></a>?</p><p>🔗 <a href="https://www.youtube.com/watch?v=y_GM12xjBWY" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=y_GM12xjBW</span><span class="invisible">Y</span></a> 2023 Oct 25<br>🔗 <a href="https://en.wikipedia.org/wiki/Bell%27s_theorem" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Bell%27s</span><span class="invisible">_theorem</span></a></p><p><a href="https://me.dm/tags/Community" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Community</span></a> <a href="https://me.dm/tags/TimeTravel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TimeTravel</span></a> <a href="https://me.dm/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://me.dm/tags/Newton" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Newton</span></a> <a href="https://me.dm/tags/quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quantum</span></a> <a href="https://me.dm/tags/gravity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gravity</span></a> <a href="https://me.dm/tags/Kronodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kronodon</span></a></p>
The Krononaut Moon Project 🌑<p>&nbsp;<br>How Noether’s Theorem Revolutionized Physics</p><p>❛❛ Emmy <a href="https://me.dm/tags/Noether" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Noether</span></a> showed that <a href="https://me.dm/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://me.dm/tags/physical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physical</span></a> <a href="https://me.dm/tags/laws" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>laws</span></a> are just a consequence of simple <a href="https://me.dm/tags/symmetries" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>symmetries</span></a>. A <a href="https://me.dm/tags/century" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>century</span></a> later, <a href="https://me.dm/tags/her" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>her</span></a> insights continue to shape <a href="https://me.dm/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a>. ❜❜ </p><p>🔗 <a href="https://www.QuantaMagazine.org/how-noethers-theorem-revolutionized-physics-20250207/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">QuantaMagazine.org/how-noether</span><span class="invisible">s-theorem-revolutionized-physics-20250207/</span></a> 2025 Feb 07<br>🔗 <a href="https://Wikipedia.org/wiki/Emmy_Noether" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">Wikipedia.org/wiki/Emmy_Noethe</span><span class="invisible">r</span></a> … <a href="https://me.dm/tags/EmmyNoether" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EmmyNoether</span></a> </p><p><a href="https://me.dm/tags/Community" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Community</span></a> <a href="https://me.dm/tags/TimeTravel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TimeTravel</span></a> <a href="https://me.dm/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://me.dm/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://me.dm/tags/theoretical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theoretical</span></a> <a href="https://me.dm/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://me.dm/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://me.dm/tags/conservation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>conservation</span></a> <a href="https://me.dm/tags/laws" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>laws</span></a> <a href="https://me.dm/tags/woman" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>woman</span></a> <a href="https://me.dm/tags/physicist" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physicist</span></a> <a href="https://me.dm/tags/Kronodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kronodon</span></a></p>
Paysages Mathématiques<p>Theorem of the Day (January 1st, 2025) : Galois’ Theorem on Finite Fields<br>Source : Theorem of the Day / Robin Whitty<br>pdf : <a href="https://www.theoremoftheday.org/Algebra/FiniteFields/TotDFiniteFields.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Algebra/Fi</span><span class="invisible">niteFields/TotDFiniteFields.pdf</span></a><br>notes : <a href="https://www.theoremoftheday.org/Resources/TheoremNotes.htm#58" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theoremoftheday.org/Resources/</span><span class="invisible">TheoremNotes.htm#58</span></a></p><p><a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a></p>
Chuck Darwin<p>Content moderation is, inherently, a subjective practice. </p><p>Despite some people’s desire to have content moderation be more scientific and objective, that’s impossible. </p><p>By definition, content moderation is always going to rely on judgment calls, <br>and many of the judgment calls will end up in gray areas where lots of people’s opinions may differ greatly. </p><p>Indeed, one of the problems of content moderation that we’ve highlighted over the years is that to make good decisions you often need a tremendous amount of <a href="https://c.im/tags/context" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>context</span></a>, <br>and there’s simply no way to adequately provide that at scale in a manner that actually works. </p><p>That is, when doing content moderation at scale, you need to set rules, <br>but rules leave little to no room for understanding context and applying it appropriately. </p><p>And thus, you get lots of crazy edge cases that end up looking bad.</p><p>We’ve seen this directly. </p><p>Last year, when we turned an entire conference of “content moderation” specialists into content moderators for an hour, <br>we found that there were exactly zero cases where we could get all attendees to agree on what should be done in any of the eight cases we presented.</p><p>Further, people truly underestimate the impact that “<a href="https://c.im/tags/scale" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scale</span></a>” has on this equation. </p><p>Getting 99.9% of content moderation decisions at an “acceptable” level probably works fine for situations when you’re dealing with 1,000 moderation decisions per day, <br>but large platforms are dealing with way more than that. </p><p>If you assume that there are 1 million decisions made every day, <br>even with 99.9% “accuracy” <br>(and, remember, there’s no such thing, given the points above), <br>you’re still going to “miss” 1,000 calls. </p><p>But 1 million is nothing. <br>On Facebook alone a recent report noted that there are 350 million photos uploaded every single day. </p><p>And that’s just photos. <br>If there’s a 99.9% accuracy rate, <br>it’s still going to make “mistakes” on 350,000 images. <br>Every. Single. Day. </p><p>So, add another 350,000 mistakes the next day. And the next. And the next. And so on.</p><p>And, even if you could achieve such high “accuracy” and with so many mistakes, <br>it wouldn’t be difficult for, say, a journalist to go searching and find a bunch of those mistakes <br>— and point them out. </p><p>This will often come attached to a line like <br>“well, if a reporter can find those bad calls, why can’t Facebook?” <br>which leaves out that Facebook DID find that other 99.9%. </p><p>Obviously, these numbers are just illustrative, but the point stands that when you’re doing content moderation at scale, <br>the scale part means that even if you’re very, very, very, very good, you will still make a ridiculous number of mistakes in absolute numbers every single day.</p><p>So while I’m all for exploring different approaches to content moderation, <br>and see no issue with people calling out failures when they (frequently) occur, <br>it’s important to recognize that there is no perfect solution to content moderation, <br>and any company, no matter how thoughtful and deliberate and careful is going to make mistakes. </p><p>Because that’s <a href="https://c.im/tags/Masnick" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Masnick</span></a>’s <a href="https://c.im/tags/Impossibility" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Impossibility</span></a> <a href="https://c.im/tags/Theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Theorem</span></a> <br>— and unless you can disprove it, we’re going to assume it’s true<br><a href="https://www.techdirt.com/2019/11/20/masnicks-impossibility-theorem-content-moderation-scale-is-impossible-to-do-well/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">techdirt.com/2019/11/20/masnic</span><span class="invisible">ks-impossibility-theorem-content-moderation-scale-is-impossible-to-do-well/</span></a></p>
The Krononaut Moon Project 🌑<p>&nbsp; &nbsp;<br>❛❛ Teen <a href="https://me.dm/tags/Mathematicians" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematicians</span></a> Tie <a href="https://me.dm/tags/Knots" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Knots</span></a> Through a <a href="https://me.dm/tags/Mind" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mind</span></a>-Blowing Fractal ❜❜ </p><p>Three high schoolers and their mentor revisited a century-old <a href="https://me.dm/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> to prove that all <a href="https://me.dm/tags/knots" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>knots</span></a> can be found in a <a href="https://me.dm/tags/fractal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fractal</span></a> called the <a href="https://me.dm/tags/MengerSponge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MengerSponge</span></a>. <br>Gregory Barber for <a href="https://me.dm/tags/QuantaMagazine" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantaMagazine</span></a> </p><p>🔗 <a href="https://QuantaMagazine.org/teen-mathematicians-tie-knots-through-a-mind-blowing-fractal-20241126/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">QuantaMagazine.org/teen-mathem</span><span class="invisible">aticians-tie-knots-through-a-mind-blowing-fractal-20241126/</span></a> 2024 Nov 26 ce <br>🔗 <a href="https://Wikipedia.org/wiki/Menger_sponge" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">Wikipedia.org/wiki/Menger_spon</span><span class="invisible">ge</span></a> … <a href="https://me.dm/tags/MengerSponge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MengerSponge</span></a> <br>🔗 <a href="https://Wikipedia.org/wiki/Topology" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">Wikipedia.org/wiki/Topology</span><span class="invisible"></span></a> … <a href="https://me.dm/tags/Topology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Topology</span></a> </p><p><a href="https://me.dm/tags/Community" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Community</span></a> <a href="https://me.dm/tags/TimeTravel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TimeTravel</span></a> <a href="https://me.dm/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://me.dm/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://me.dm/tags/dimensions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dimensions</span></a> <a href="https://me.dm/tags/Kronodon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kronodon</span></a></p>
Eric Maugendre<p>"Majorizing measures provide bounds for the supremum of stochastic processes. They represent the most general possible form of the chaining argument".</p><p>Michel Talagrand, 1996, <a href="https://projecteuclid.org/journals/annals-of-probability/volume-24/issue-3/Majorizing-measures-the-generic-chaining/10.1214/aop/1065725175.full" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">projecteuclid.org/journals/ann</span><span class="invisible">als-of-probability/volume-24/issue-3/Majorizing-measures-the-generic-chaining/10.1214/aop/1065725175.full</span></a></p><p><a href="https://hachyderm.io/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://hachyderm.io/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://hachyderm.io/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://hachyderm.io/tags/Talagrand" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Talagrand</span></a> <a href="https://hachyderm.io/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://hachyderm.io/tags/bigData" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigData</span></a> <a href="https://hachyderm.io/tags/chaining" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chaining</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/AbelPrize" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AbelPrize</span></a> <a href="https://hachyderm.io/tags/Abel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Abel</span></a></p>
Rémi Eismann<p>A short story about my decomposition into weight × level + jump. It's a new fundamental theorem of arithmetic and academia is 11 years late.<br>⬇️</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/NSA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NSA</span></a> <a href="https://mathstodon.xyz/tags/CIA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CIA</span></a> <a href="https://mathstodon.xyz/tags/DGSE" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DGSE</span></a> <a href="https://mathstodon.xyz/tags/DGSI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DGSI</span></a> <a href="https://mathstodon.xyz/tags/Google" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Google</span></a></p>
Rémi Eismann<p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> ➡️ It's a decomposition of positive integers. The weight is the smallest such that in the Euclidean division of a number by its weight, the remainder is the jump (first difference, gap). The quotient will be the level. So to decompose a(n), we need a(n+1) with a(n+1)&gt;a(n) (strictly increasing sequence), the decomposition is possible if a(n+1)&lt;3/2×a(n) and we have the unique decomposition a(n) = weight × level + jump.</p><p>We see the fundamental theorem of arithmetic and the sieve of Eratosthenes in the decomposition into weight × level + jump of natural numbers. For natural numbers, the weight is the smallest prime factor of (n-1) and the level is the largest proper divisor of (n-1). Natural numbers classified by level are the (primes + 1) and natural numbers classified by weight are the (composites +1).</p><p>For prime numbers, this decomposition led to a new classification of primes. Primes classified by weight follow Legendre conjecture and i conjecture that primes classified by level rarefy. I think this conjecture is very important for the distribution of primes.</p><p>It's easy to see and prove that lesser of twin primes (&gt;3) have a weight of 3. So the twin primes conjecture can be rewritten: there are infinitely many primes that have a weight of 3.</p><p>I am not mathematician so i decompose sequences to promote my vision of numbers. By doing these decompositions, i apply a kind of sieve on each sequences.</p><p>➡️ <a href="https://oeis.org/wiki/Decomposition_into_weight_*_level_%2B_jump" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Decomposition_in</span><span class="invisible">to_weight_*_level_%2B_jump</span></a></p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a></p>