shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

263
active users

#polyhedra

0 posts0 participants0 posts today
foldworks<p>I couldn’t resist making this in Geogebra: morphing between a regular icosahedron and a regular dodecahedron.</p><p>h/t <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> <a href="https://mathstodon.xyz/@unnick@booping.synth.download/114350750053349050" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@unnick@booping</span><span class="invisible">.synth.download/114350750053349050</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/icosahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>icosahedron</span></a> <a href="https://mathstodon.xyz/tags/dodecahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dodecahedron</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
Mark Gritter<p>This illustration of a 38-sided space-filling polyhedron is great! <a href="https://wolfr.am/Engel-38" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">wolfr.am/Engel-38</span><span class="invisible"></span></a></p><p>This is the largest number of sides known for any convex space-filing polyhedron. The theoretical upper bound is 92, given by <a href="https://arxiv.org/abs/0708.2114" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/0708.2114</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/spacefilling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spacefilling</span></a> <a href="https://mathstodon.xyz/tags/combinatorics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>combinatorics</span></a></p>
n-gons<p><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a>: <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> of 114 identical <a href="https://mathstodon.xyz/tags/toroid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>toroid</span></a> equilateral <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> </p><p><a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hedron</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/Loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Loop</span></a> <a href="https://mathstodon.xyz/tags/PerfectLoop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PerfectLoop</span></a> <a href="https://mathstodon.xyz/tags/MatArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MatArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a></p>
Dan Drake 🦆<p>Oh my, this is so lovely and fun!</p><p><a href="https://andrewmarsh.com/software/poly3d-web/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">andrewmarsh.com/software/poly3</span><span class="invisible">d-web/</span></a></p><p>Polyhedron generator: you start with a polyhedron and can apply all sorts of cool operations to make new ones. </p><p>It reminds me of the Java applets I made (20+ years ago!) that would apply a few operations -- truncation, expansion, snubification -- to the Platonic solids. I should dig those up and see if they still work. What I like about is that they animated the transition.</p><p><a href="https://ddrake.prose.sh/choosing_tools" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">ddrake.prose.sh/choosing_tools</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/shapes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shapes</span></a></p>
n-gons<p>Rhombicosahedron from 3 shapes.</p><p>Very much inspired by postings by <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Albert" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>Albert</span></a></span> </p><p><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/mathsart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathsart</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/hedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hedron</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a></p>
n-gons<p>It's <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> - today some <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> - here I tile a cube from 8 identical pieces - each one dodecahedron and three halved bilunabirotundas. There are holes in the model, but actually these shapes can tile space.</p><p><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/mathsart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathsart</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/hedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hedron</span></a></p>
n-gons<p><span class="h-card"><a href="https://pixelfed.social/dansup" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>dansup</span></a></span> <span class="h-card"><a href="https://mastodon.social/@pixelfed" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>pixelfed</span></a></span> <br><span class="h-card"><a href="https://metapixl.com/n-gons" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>n-gons</span></a></span> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/mathsart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathsart</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/knots" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>knots</span></a> <a href="https://mathstodon.xyz/tags/isometric" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>isometric</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a></p>
Henry Segerman<p>At this month's Illustrating Math Discord Social, <span class="h-card"><a href="https://mathstodon.xyz/@nanma80" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>nanma80</span></a></span> suggested that every net of the icosahedron is also a net of the great icosahedron. <span class="h-card"><a href="https://mathstodon.xyz/@saulsch" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>saulsch</span></a></span> and I made a "proof by video" that this is true. The icosahedron and the great icosahedron have the same underlying combinatorics, so we can continuously move from one to the other. <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polyhedra</span></a></p>
n-gons<p>Rounded cube from Rhombicuboctahedron grid. Like most of my 3D stuff this was made with <span class="h-card"><a href="https://mathstodon.xyz/@hedron" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>hedron</span></a></span> app <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/Cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Cube</span></a> <a href="https://mathstodon.xyz/tags/Polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polyhedra</span></a></p>
aliivibrio<p>following intro up with some hashtags</p><p>Things I do actively!</p><p>Programming: <a href="https://mathstodon.xyz/tags/csharp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>csharp</span></a> <a href="https://mathstodon.xyz/tags/fsharp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fsharp</span></a> <a href="https://mathstodon.xyz/tags/functionalprogramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>functionalprogramming</span></a> <a href="https://mathstodon.xyz/tags/idris" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>idris</span></a> <a href="https://mathstodon.xyz/tags/clojure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>clojure</span></a> <a href="https://mathstodon.xyz/tags/typescript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>typescript</span></a><br>Gamedev: <a href="https://mathstodon.xyz/tags/bitsy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bitsy</span></a> <a href="https://mathstodon.xyz/tags/twine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>twine</span></a> <a href="https://mathstodon.xyz/tags/interactivefiction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>interactivefiction</span></a> <a href="https://mathstodon.xyz/tags/pico8" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pico8</span></a> <a href="https://mathstodon.xyz/tags/roguelike" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>roguelike</span></a> <a href="https://mathstodon.xyz/tags/rotjs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rotjs</span></a><br>Music: <a href="https://mathstodon.xyz/tags/guitar" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guitar</span></a> <a href="https://mathstodon.xyz/tags/lute" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lute</span></a> <a href="https://mathstodon.xyz/tags/earlymusic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earlymusic</span></a> <a href="https://mathstodon.xyz/tags/mbira" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mbira</span></a> <a href="https://mathstodon.xyz/tags/livecoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>livecoding</span></a> <a href="https://mathstodon.xyz/tags/sonicpi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sonicpi</span></a> <a href="https://mathstodon.xyz/tags/dungeonsynth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dungeonsynth</span></a></p><p>Interests!<br>Math: <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://mathstodon.xyz/tags/tessellations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tessellations</span></a> <a href="https://mathstodon.xyz/tags/theoreticalcomputerscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theoreticalcomputerscience</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/abstractalgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>abstractalgebra</span></a><br>Nature <a href="https://mathstodon.xyz/tags/ferns" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ferns</span></a> <a href="https://mathstodon.xyz/tags/fungi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fungi</span></a> <a href="https://mathstodon.xyz/tags/slimemold" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>slimemold</span></a> <a href="https://mathstodon.xyz/tags/lichen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lichen</span></a> <a href="https://mathstodon.xyz/tags/invertebrates" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>invertebrates</span></a><br>Other: <a href="https://mathstodon.xyz/tags/bicycling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bicycling</span></a> <a href="https://mathstodon.xyz/tags/swordandsorcery" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>swordandsorcery</span></a></p>