shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

289
active users

#inference

1 post1 participant0 posts today
☮ ♥ ♬ 🧑‍💻<p>Day 19 cont 🙏⛪️🕍🕌⛩️🛕 💽🧑‍💻</p><p>“The <a href="https://ioc.exchange/tags/LiberalParty" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LiberalParty</span></a> has accidentally left part of its email provider’s <a href="https://ioc.exchange/tags/subscriber" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>subscriber</span></a> details exposed, revealing the types of <a href="https://ioc.exchange/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> harvested by the party during the <a href="https://ioc.exchange/tags/election" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>election</span></a> campaign.</p><p>This gives rare <a href="https://ioc.exchange/tags/insight" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>insight</span></a> into some of the specific kinds of data the party is keeping on voters, including whether they are “predicted Chinese”, “predicted Jewish”, a “strong Liberal” and other <a href="https://ioc.exchange/tags/PersonalInformation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PersonalInformation</span></a>.”</p><p><a href="https://ioc.exchange/tags/AusPol" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AusPol</span></a> / <a href="https://ioc.exchange/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> / <a href="https://ioc.exchange/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> / <a href="https://ioc.exchange/tags/voters" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>voters</span></a> / <a href="https://ioc.exchange/tags/Liberal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Liberal</span></a> / <a href="https://ioc.exchange/tags/LNP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LNP</span></a> / <a href="https://ioc.exchange/tags/Nationals" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Nationals</span></a> &lt;<a href="https://www.crikey.com.au/2025/04/17/victorian-liberals-data-exposed-email-mailchimp-federal-election-crikey/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">crikey.com.au/2025/04/17/victo</span><span class="invisible">rian-liberals-data-exposed-email-mailchimp-federal-election-crikey/</span></a>&gt;</p>
Simone<p>How is <a href="https://mastodon.social/tags/censorship" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>censorship</span></a> implemented in <a href="https://mastodon.social/tags/deepseek" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>deepseek</span></a>? A link to <a href="https://mastodon.social/tags/wikipedia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>wikipedia</span></a> referring to the <a href="https://mastodon.social/tags/tienanmen" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tienanmen</span></a> square can spark an <a href="https://mastodon.social/tags/ethical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ethical</span></a> judgment on the <a href="https://mastodon.social/tags/chinese" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chinese</span></a> government. Of course it dare not speak its name 😉 <br>Since censorship is active also on locally run model, probably it is implemented toward the last steps of <a href="https://mastodon.social/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a>, while the training set was hastily used and not “curated” for censorship. <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a></p>
Eric Maugendre<p>"In real life, we weigh the anticipated consequences of the decisions that we are about to make. That approach is much more rational than limiting the percentage of making the error of one kind in an artificial (null hypothesis) setting or using a measure of evidence for each model as the weight."<br>Longford (2005) <a href="http://www.stat.columbia.edu/~gelman/stuff_for_blog/longford.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://www.</span><span class="ellipsis">stat.columbia.edu/~gelman/stuf</span><span class="invisible">f_for_blog/longford.pdf</span></a></p><p><a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/nullHypothesis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nullHypothesis</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/pValues" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pValues</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/statisticalLiteracy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statisticalLiteracy</span></a> <a href="https://hachyderm.io/tags/bias" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bias</span></a> <a href="https://hachyderm.io/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> <a href="https://hachyderm.io/tags/modelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelling</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linearRegression</span></a></p>
Eric Maugendre<p>Feature Selection in Python; a script ready to use: <a href="https://johfischer.com/2021/08/06/correlation-based-feature-selection-in-python-from-scratch/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">johfischer.com/2021/08/06/corr</span><span class="invisible">elation-based-feature-selection-in-python-from-scratch/</span></a></p><p><a href="https://hachyderm.io/tags/interpretability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>interpretability</span></a> <a href="https://hachyderm.io/tags/featureSelection" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>featureSelection</span></a> <a href="https://hachyderm.io/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/bigData" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigData</span></a> <a href="https://hachyderm.io/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/Schusterbauer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Schusterbauer</span></a> <a href="https://hachyderm.io/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> <a href="https://hachyderm.io/tags/AIDev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIDev</span></a></p>
Eric Maugendre<p>An easy guide to predict possible future quantities, by Mercy Kibet: <a href="https://www.influxdata.com/blog/guide-regression-analysis-time-series-data/#heading0" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">influxdata.com/blog/guide-regr</span><span class="invisible">ession-analysis-time-series-data/#heading0</span></a></p><p><a href="https://hachyderm.io/tags/timeSeries" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>timeSeries</span></a> <a href="https://hachyderm.io/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://hachyderm.io/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/dataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataScience</span></a> <a href="https://hachyderm.io/tags/futures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>futures</span></a> <a href="https://hachyderm.io/tags/money" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>money</span></a> <a href="https://hachyderm.io/tags/trends" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>trends</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a></p>
IT News<p>IBM has made a new, highly efficient AI processor - Enlarge (credit: IBM) </p><p>As the utility of AI systems has grown d... - <a href="https://arstechnica.com/?p=1977529" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arstechnica.com/?p=1977529</span><span class="invisible"></span></a> <a href="https://schleuss.online/tags/computerscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>computerscience</span></a> <a href="https://schleuss.online/tags/neuralnetwork" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuralnetwork</span></a> <a href="https://schleuss.online/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> <a href="https://schleuss.online/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://schleuss.online/tags/energy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>energy</span></a> <a href="https://schleuss.online/tags/green" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>green</span></a> <a href="https://schleuss.online/tags/ibm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ibm</span></a> <a href="https://schleuss.online/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a></p>
Matthias Rosenkranz<p>Reposting <a href="https://mathstodon.xyz/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a></p><p>I'm a scientist working on <a href="https://mathstodon.xyz/tags/quantumcomputing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quantumcomputing</span></a> at Quantinuum. I oversee our R&amp;D collaborations and research in combining quantum algorithms and <a href="https://mathstodon.xyz/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> techniques. My main interests are <a href="https://mathstodon.xyz/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> and probabilistic approaches to <a href="https://mathstodon.xyz/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a>, <a href="https://mathstodon.xyz/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a>, <a href="https://mathstodon.xyz/tags/GenerativeModels" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeModels</span></a>, <a href="https://mathstodon.xyz/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a>, <a href="https://mathstodon.xyz/tags/ml4science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ml4science</span></a>. In the past I was a researcher in <a href="https://mathstodon.xyz/tags/ultracoldatoms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ultracoldatoms</span></a> and <a href="https://mathstodon.xyz/tags/boseeinsteincondensates" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>boseeinsteincondensates</span></a>, and I enjoy <a href="https://mathstodon.xyz/tags/literature" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>literature</span></a>.</p><p>I hope we can grow a welcoming <a href="https://mathstodon.xyz/tags/quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quantum</span></a> community on Mastodon.</p>
archaeoriddle<p>Time for our <a href="https://fediscience.org/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a> !<br>We are a group of researchers in <a href="https://fediscience.org/tags/archaeology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>archaeology</span></a> at <a href="https://fediscience.org/tags/CambridgeUniversity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CambridgeUniversity</span></a> (something called <a href="https://fediscience.org/tags/CDAL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CDAL</span></a> ). We are challenging scientists from every fields &amp; every level to infer what happened in an artificial world where a group of <a href="https://fediscience.org/tags/Farmers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Farmers</span></a> replaced a group of <a href="https://fediscience.org/tags/HunterGatherers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HunterGatherers</span></a> . Its a game, open to anyone, using any <a href="https://fediscience.org/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> method as long as we can re-run the analysis ourself ( <a href="https://fediscience.org/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a> tools only, we won't pay a matlab licence to re-run your code 🙃 )</p>