shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

252
active users

#atomistic

0 posts0 participants0 posts today
Michael Herbst<p>Hello <a href="https://social.epfl.ch/tags/fediverse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fediverse</span></a> <a href="https://social.epfl.ch/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a></p><p>I'm Michael, professor in the institutes of <a href="https://social.epfl.ch/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> and <a href="https://social.epfl.ch/tags/materials" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>materials</span></a> science and head of the <span class="h-card" translate="no"><a href="https://social.epfl.ch/@MatMat" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>MatMat</span></a></span> group at <a href="https://social.epfl.ch/tags/EPFL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EPFL</span></a>.</p><p>I work on the <a href="https://social.epfl.ch/tags/atomistic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>atomistic</span></a> simulations of materials, mainly density-functional theory (DFT) methods, understanding <a href="https://social.epfl.ch/tags/simulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>simulation</span></a> errors and <a href="https://social.epfl.ch/tags/uncertainties" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>uncertainties</span></a> in predicted materials properties.</p><p>I use techniques from <br><a href="https://social.epfl.ch/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://social.epfl.ch/tags/computerscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>computerscience</span></a> <a href="https://social.epfl.ch/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> and <br>develop related <a href="https://social.epfl.ch/tags/julialang" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>julialang</span></a> packages such as the density-functional toolkit (<a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dftk</span></a>).</p>