shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

264
active users

#algorithmicart

2 posts2 participants0 posts today
Dani Laura (they/she/he)<p>"The Great Splash". Based on the golden ratio.<br><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/GoldenRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GoldenRatio</span></a></p>
Steven Dollins<p>A round hole in a square peg</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Dani Laura (they/she/he)<p>In the following artworks the corners of the polygonal lines are rounded.<br><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a></p>
Dani Laura (they/she/he)<p>These artworks are based on a generalization of Lucas sequences for complex numbers, defined as:<br>Z(0) = 1<br>Z(1) = 1 or i<br>Z(n) = shrink( e^(iθ)·Z(n-1) + Z(n-2) )</p><p>Where shrink() is a function which decreases a complex number into the two-unit square or the unit circle centered at the origin. In these works I use three different versions, based on taking out the integer part of the real and imaginary parts (or the integer part minus 1), or of the modulus of the number in polar form.</p><p>Figure 1 depicts the 128 values walk using θ = π/5 and Z(1) = i, and the shrinking function which takes out the integer part of the real and imaginary parts.</p><p>In the three artworks that follow, the lines connecting successive values toggle between being drawn or not. See the alt text for more information related to the artworks.<br><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a></p>
Steven Dollins<p>80 vertices in 2-fold dihedral symmetry has triangle strips of 4 different lengths.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>We can also get 80-vertex tetrahedral symmetry with a more "traditional" arrangement of 12 pentagons and the rest hexagons.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>Here is an 80-vertex sphere in tetrahedral symmetry with 24 valence-7 vertices.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Jeff Palmer<p>Completed this painting recently. Not sure if I've mentioned this, but I've transitioned to a mode where I create computer algorithms that generate images, which I then paint by hand. I find the process of mapping rigid computer-based processes to the messy real world to be an extremely satisfying approach.</p><p><a href="https://genart.social/tags/Art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Art</span></a> <a href="https://genart.social/tags/Artist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Artist</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/Painting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Painting</span></a> <a href="https://genart.social/tags/AcrylicPainting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcrylicPainting</span></a></p>
Steven Dollins<p>Tetrahedral symmetry requires that a general point be in a set of 12 -- on each of the 4 faces in each of 3 orientations. You can also add 4 points at the vertices, 4 at each face center, or 6 at each edge center. Combined, any even number of points &gt;= 4 can be arranged with tetrahedral symmetry, albeit not always evenly.</p><p>Here is 50 points in tetrahedral symmetry which requires that some of them have valence 7.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>50 vertices arranged in D6 symmetry is interesting in that it forms two different but close in length triangle strips -- one following the longitudes and the other the latitudes.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>And 22 vertices can also arrange with 2-fold cylindrical symmetry that runs all the pentagons together into one long strip. It produces one long triangle strip and three short ones.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>22 vertices can also arrange with 2-fold dihedral symmetry with two strips of six pentagons each separated by a single loop of 10 hexagons. The triangulation has two long triangle strips and two short ones.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>40 vertices in tetrahedral symmetry gives a mix of the two with 4 strips that wrap twice and three that only wrap once.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>22 vertices can also have tetrahedral symmetry, but now only have four strips that each wrap the sphere twice.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>16 vertices gives a triangulation with tetrahedral symmetry. It has 7 triangle strips.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>In contrast, the 12-vertex icosahedron has 6 triangle strips.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>If you walk triangle strips on this 67 vertex sphere triangulation with 5-fold dihedral symmetry, it makes one complete circuit.</p><p><a href="https://genart.social/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a><br><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>The Orb 47/24</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Dani Laura (they/she/he)<p>Koch revisited! Another non-regular fractal produced with the idea of the previous post <a href="https://mathstodon.xyz/@DaniLaura/114715501148741420" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@DaniLaura/1147</span><span class="invisible">15501148741420</span></a> (and no randomness), see first figure. Each triangle generated from a side also depends on the sizes of the current neighbour sides, not just from the side size. Two opposite triangles are generated from each side, the internal one being invisible (but its offspring do not inherit this trait). In the second figure a regular variation where triangles are put off-centre. Here the initial triangle is not drawn as well. <br><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a></p>
Karsten Schmidt<p>Various thi.ng updates, bug fixes, additions and new version of <a href="https://github.com/thi-ng/zig-thing/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/thi-ng/zig-thing/</span><span class="invisible"></span></a> — now fully compatible with current Zig v0.14.1</p><p>On a more diary/devlog note: I also updated several of my Zig based work-in-progress art pieces to the latest version (some of them not touched in 2+ years) and it's so good to see how the <a href="https://thi.ng/wasm-api" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thi.ng/wasm-api</span><span class="invisible"></span></a> toolchain has been holding up with various breaking Zig changes and also how this setup simplifies creating hybrid Zig/TypeScript projects (e.g. for using DOM/WebGL from Zig). Related, I also want to mention once more the <a href="https://mastodon.thi.ng/tags/GenArtAPI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenArtAPI</span></a> Zig WebAssembly bindings[1] (updated a few weeks ago), which add another layer of flexibility &amp; boilerplate reduction for generative/procedural/algorithmic art projects...</p><p>I will be attempting yet another few takes creating a video overview &amp; mini-workshop/tutorial about <a href="https://thi.ng/genart-api" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">thi.ng/genart-api</span><span class="invisible"></span></a>, hopefully also touching on these aspects...</p><p>[1] <a href="https://github.com/thi-ng/genart-api/tree/main/packages/wasm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/thi-ng/genart-api/t</span><span class="invisible">ree/main/packages/wasm</span></a></p><p><a href="https://mastodon.thi.ng/tags/ThingUmbrella" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ThingUmbrella</span></a> <a href="https://mastodon.thi.ng/tags/Zig" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zig</span></a> <a href="https://mastodon.thi.ng/tags/Ziglang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ziglang</span></a> <a href="https://mastodon.thi.ng/tags/WebAssembly" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WebAssembly</span></a> <a href="https://mastodon.thi.ng/tags/WASM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WASM</span></a> <a href="https://mastodon.thi.ng/tags/GenArtAPI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenArtAPI</span></a> <a href="https://mastodon.thi.ng/tags/Art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Art</span></a> <a href="https://mastodon.thi.ng/tags/GenerativeArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeArt</span></a> <a href="https://mastodon.thi.ng/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a></p>