shakedown.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A community for live music fans with roots in the jam scene. Shakedown Social is run by a team of volunteers (led by @clifff and @sethadam1) and funded by donations.

Administered by:

Server stats:

258
active users

#aialignment

0 posts0 participants0 posts today
IT News<p>Researchers concerned to find AI models hiding their true “reasoning” processes - Remember when teachers demanded that you "show your work" in school? Some ... - <a href="https://arstechnica.com/ai/2025/04/researchers-concerned-to-find-ai-models-hiding-their-true-reasoning-processes/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">arstechnica.com/ai/2025/04/res</span><span class="invisible">earchers-concerned-to-find-ai-models-hiding-their-true-reasoning-processes/</span></a> <a href="https://schleuss.online/tags/largelanguagemodels" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>largelanguagemodels</span></a> <a href="https://schleuss.online/tags/simulatedreasoning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>simulatedreasoning</span></a> <a href="https://schleuss.online/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> <a href="https://schleuss.online/tags/aialignment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>aialignment</span></a> <a href="https://schleuss.online/tags/airesearch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>airesearch</span></a> <a href="https://schleuss.online/tags/anthropic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>anthropic</span></a> <a href="https://schleuss.online/tags/aisafety" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>aisafety</span></a> <a href="https://schleuss.online/tags/srmodels" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>srmodels</span></a> <a href="https://schleuss.online/tags/chatgpt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chatgpt</span></a> <a href="https://schleuss.online/tags/biz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>biz</span></a>⁢ <a href="https://schleuss.online/tags/claude" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>claude</span></a> <a href="https://schleuss.online/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a></p>
IT News<p>Researchers astonished by tool’s apparent success at revealing AI’s hidden motives - In a new paper published Thursday titled "Auditing language models for hid... - <a href="https://arstechnica.com/ai/2025/03/researchers-astonished-by-tools-apparent-success-at-revealing-ais-hidden-motives/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">arstechnica.com/ai/2025/03/res</span><span class="invisible">earchers-astonished-by-tools-apparent-success-at-revealing-ais-hidden-motives/</span></a> <a href="https://schleuss.online/tags/largelanguagemodels" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>largelanguagemodels</span></a> <a href="https://schleuss.online/tags/alignmentresearch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>alignmentresearch</span></a> <a href="https://schleuss.online/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> <a href="https://schleuss.online/tags/claude3" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>claude3</span></a>.5haiku <a href="https://schleuss.online/tags/aialignment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>aialignment</span></a> <a href="https://schleuss.online/tags/aideception" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>aideception</span></a> <a href="https://schleuss.online/tags/airesearch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>airesearch</span></a> <a href="https://schleuss.online/tags/anthropic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>anthropic</span></a> <a href="https://schleuss.online/tags/chatgpt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chatgpt</span></a> <a href="https://schleuss.online/tags/chatgtp" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chatgtp</span></a> <a href="https://schleuss.online/tags/biz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>biz</span></a>⁢ <a href="https://schleuss.online/tags/claude" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>claude</span></a> <a href="https://schleuss.online/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a></p>
Mark Abraham<p>“We need to do empirical experiments on how these things try to escape control,” Hinton told @andersen. “After they’ve taken over, it’s too late to do the experiments.” @TheAtlantic @OpenAI <a href="https://mastodon.world/tags/aialignment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>aialignment</span></a> <a href="https://mastodon.world/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a></p>
Hobson Lane<p><span class="h-card"><a href="https://mstdn.social/@rysiek" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>rysiek</span></a></span> <span class="h-card"><a href="https://pleroma.pch.net/users/woody" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>woody</span></a></span> The first step in controlling or regulating AI is predicting what it will do next. <br>( <a href="https://mstdn.social/tags/AIControlProblem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIControlProblem</span></a> <a href="https://mstdn.social/tags/AISafety" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AISafety</span></a> <a href="https://mstdn.social/tags/AIAlignment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIAlignment</span></a> - <a href="https://en.m.wikipedia.org/wiki/AI_alignment" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.m.wikipedia.org/wiki/AI_ali</span><span class="invisible">gnment</span></a> )</p><p>And to predict what a system will do next you have to first get good at explaining why it did what it did the last time.</p><p>The smartest researchers think we're decades away from being able to explain deep neural networks. So LLMs &amp; self driving cars keep doing bad things.</p><p><a href="https://mstdn.social/tags/AIExplainability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIExplainability</span></a> - <a href="https://en.wikipedia.org/wiki/Explainable_artificial_intelligence" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Explaina</span><span class="invisible">ble_artificial_intelligence</span></a></p>
Roban Hultman Kramer<p>Anyway, I keep meaning to write up a blog post on “falsehoods I have believed about measuring model performance” touching on <a href="https://sigmoid.social/tags/AppliedML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AppliedML</span></a> issues related to <a href="https://sigmoid.social/tags/modelEvaluation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelEvaluation</span></a>, <a href="https://sigmoid.social/tags/metrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>metrics</span></a>, <a href="https://sigmoid.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monitoring</span></a>, <a href="https://sigmoid.social/tags/observability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>observability</span></a>, and <a href="https://sigmoid.social/tags/experiments" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>experiments</span></a> (<a href="https://sigmoid.social/tags/RCTs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RCTs</span></a>). The cool kids would call this <a href="https://sigmoid.social/tags/AIAlignment" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIAlignment</span></a> in their VC pitch decks, but even us <a href="https://sigmoid.social/tags/NormCore" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NormCore</span></a> ML engineers have to wrestle with how to measure and optimize the real-world impact of our models.</p>